Prof. Ouaïl OUCHETTO Matière : Algèbre Semestre 2 / Ensembles 1 & 3

Travaux dirigés (avec correction) : Applications linéaires – Série II –

EXERCICE 1

Déterminer si les applications p_i suivantes sont linéaires :

$$p_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$

$$(x,y) \mapsto (3x+y,x-y)$$

$$p_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$$

$$(x,y) \mapsto x^{2}+y^{2}$$

$$p_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$$

$$(x,y,z) \mapsto (x+y,x-z,x+y+z)$$

$$p_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$$

$$(x,y) \mapsto (x+y,x,xy)$$

EXERCICE 2

On considère l'application linéaire suivante :

$$\begin{array}{ccc} p: \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x-2y, 4x-8y) \end{array}$$

- 1. Montrer que p est ni injective ni surjective.
- 2. Donner une base de son noyau et une base de son image.

EXERCICE 3

On considère les applications linéaires suivantes :

$$p_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$

$$(x,y) \mapsto (3x+y,x-y)$$

$$p_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$$

$$(x,y) \mapsto (y,x-5y,x+y)$$

$$p_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$$

$$(x,y,z) \mapsto (2x+2y-z,2x+y,y-z,)$$

- (a) Déterminer $Ker(p_i)$ et déduire si p_i est injective.
- (b) Déterminer $Im(p_i)$ et déduire si p_i est surjective.
- (c) Déduire si p_i est bijective.

EXERCICE 4

On considère l'application linéaire suivante :

$$\begin{array}{ccc} p:\mathbb{R}^3 & \rightarrow & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (-x+2y+2z,-x+z,-x+2y+2z) \end{array}$$

- 1. Déterminer une base de ker(p) et une base de Im(p)
- 2. A-t-on $\ker(p) \oplus Im(p) = \mathbb{R}^3$?

Rappel: Soient F_1 et F_2 deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E: $F_1 \oplus F_2 = E \Leftrightarrow F_1 + F_2 = E$ et $F_1 \cap F_2 = \{0_E\}$