FSJES - Casablanca	A. U: 2018-2019 / Rattrapage
Filière : Sciences Économiques et Gesti	on <u>Semestre</u> : 2 <u>Ensemble</u> :
Elément de Module : Algèbre	Professeur : Ouaïl OUCHETTO
Nom:	Prénom :
CNE:	N° Examen:
Écrire juste les réponses dans les chan	ıps réservés à cet effet.
1) Soient $A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.	Calculer $(A - B)^2$ =
2) Calculer l'inverse $A = \begin{pmatrix} -5 & 1 \\ 4 & 2 \end{pmatrix}$ de	$B = \begin{pmatrix} 3 & 1 & -6 \\ -3 & 2 & 7 \end{pmatrix}$
(4 2)	$\begin{pmatrix} 5 & -2 & 6 \end{pmatrix}$
A ⁻¹ =	B^{-1} =
2)	
3) p_1 et p_2 deux applications de \mathbb{R}^2 dans $y, 2x - 3y$). Calculer $p_1 o p_2$ et $p_2 o p_1$:	\mathbb{R}^2 avec $p_1(x, y) = (6x - 3y, x + 2y)$ et $p_2(x, y) = (2x - 2y)$
$p_1 o p_2(x, y) = \dots$	$p_2 o p_1(x, y) = \dots$
4) Donner le système générateur de $G =$	$\{(x, y, z) \in \mathbb{R}^3 / 8y - 3z = 0 \}$
5) Donner le noyau de l'application $p(x, y)$	(y,z) = (x + 2y - 3z, 2x + 4y - 6z, x + 3y - 7z)
6) Soit $n(r, v) = (9v + \alpha v, 4r - 5v)$ es	t une application. Déterminer l'ensemble des valeurs de α pour que
le rang de p soit égal à 1.	t une application. Determiner rensemble des valeurs de a pour que
7) La familla (2, 2, 2), est liée avec 2, -	(0, -2, 3), v = (1, 0, -5) et $w = (5, -2, -22)$. Donner la relation
de dépendance qui existe entre ces vecter	
	$(-2y \pm 5y \pm 1z - 2)$
8) Soit $AX = B$ l'écriture matricielle du s	$\begin{cases} 2x + 3y + 1z - 2 \\ 7x - 1y + 2z = -2 \end{cases}$
	$\int 5x - 2y + 1z = 4$
- Calculer $ A = N(x) =$	$ N(y) = N(z) =$
Dáduira la calution de (C):	
- Deduire la solution de (3) :	

FSJES - Casablanca	A. U : 20)18-2019			
Filière : Sciences Économic	jues et Gestion Sem	nestre: 2	Ensemble:		
Elément de Module : Algèb	re Professe	eur : Ouaïl (OUCHETTO		
Nom:	Prénom	ı :			
CNE :	N° Exa	men:			
L Écrire juste les réponses da	ıns les champs réserv	vés à cet eff	fet.		
1) Soient $A = \begin{pmatrix} 3 \\ 2 \\ -7 \\ 4 \end{pmatrix}$ et $B =$	(5 6 1 9), calcu	iler les prod	luits :		
7B * A	l=		3A*B=		
2) $C = \{(x, y, z) \in \mathbb{R}^3 / x + y \}$ v dans C mais $u+v$ n'est pas	dans C.				eux vecteurs <i>u</i> et
u=		v=			
3) p est une application de \mathbb{R}	\mathbb{R}^3 dans \mathbb{R}^2 avec $p(x, x)$	(2x)	z - 3y + z, $4x$	(z - 6y + 2z).	
Donner le noyau de p :					
				2	
4) Pour quelle valeur de β le (3, β , 7) et $u_3 = (1, 4, -2)$		n'est pas	générateur de	\mathbb{R}^3 , avec $u_1 = 0$	$(4, -7, 3), u_2 =$
$\beta =$					
5) Soit $p(x, y) = (9x + \alpha y, \alpha y)$ le rang de p soit égal à 2. $\alpha =$	4x - 5y) est une appl			emble des valeur	s de α pour que
6) Soit A une matrice $P(\lambda)$ so	on nolynôme, caractér	ristique ave	$c P(\lambda) = \lambda^3 +$	$-7\lambda^2 + 4\lambda + 2$	
Donner l'inverse A^{-1} en foncti				770 17012.	
$A^{-1} =$					
7) On considère le système {	4x + 2y - 6z = 5 $-3x + y + 5z = -2.$ $5x + 1y + 7z = 1$	Son é	criture matrici	ielle est $AX = B$:	
- Calculer	A ⁻¹ =				
	e solutions :				
8) Soit $AX = B$ l'écriture ma	tricielle du système (S	(S_2) $\begin{cases} -1x + \\ 3x - \\ 4x + \end{cases}$	4y + 8z = 5 $1y + 2z = 2$ $3y - 1z = 1$		
- Calculer A =	$ N(x) = \dots$	N(y)	=	$ N(z) = \dots$	
- Déduire la solution de (S_2)	:				

	7 -2018 / Rattrapage
Filière : Sciences Économiques et Gestion Semes	stre: 2 Ensemble:
Elément de Module : Algèbre Professeur	: Ouaïl OUCHETTO
Nom : Prénom :	
CNE : N° Examen :	N° Examen :
Écrire juste les réponses dans les champs réservé	s à cet effet.
1) Soient $u = (5, -3, 8)$ et $v = (5, 8, -2)$ deux vect	eurs de \mathbb{R}^3 . Calculer :
$ u =\dots$	<i>u, v >=</i>
2) Soient $A = \begin{pmatrix} 2 & 5 \\ -3 & 4 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 9 & 3 \\ 2 & 5 \\ -7 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 9 & 3 \\ 2 & 5 \\ -7 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & -8 & 7 \\ 3 & 1 & 2 \end{pmatrix}$. Calculer: $-2B * C = \dots$
3) Soit $F = \{(x, y, z) \in \mathbb{R}^3 / (\alpha + 2)x^2 + (5 - 4\beta^2) \}$ de α et β pour que F soit un sous-espace vectoriel de	$\sin(y) + 3x - 5z$ une partie de \mathbb{R}^3 . Donner la valeur \mathbb{R}^3 .
α=	$oldsymbol{eta}=\ldots\ldots$
4) Donner le noyau de l'application $p(x, y, z) = (5x)$	x - 2y + 3z, -10x + 4y - 6z, 5x - 15z
5) Soit $S = (u, v, w)$ un système de vecteurs de \mathbb{R}^3 a Déterminer β afin que S ne soit pas une base de \mathbb{R}^3 $\beta = \dots$	vec $u = (8, -2, 4), v = (4, \beta, 8)$ et $w = (3, 2, 5)$.
6) Donner l'inverse de A et de B avec $A = \begin{pmatrix} 9 & 2 \\ 7 & 3 \end{pmatrix}$ e	$AB = \begin{pmatrix} 4 & -6 & 3 \\ -8 & 2 & 4 \\ 7 & 2 & 5 \end{pmatrix}$
A ⁻¹ =	B^{-1} =
λ_1 =	eurs propres λ_1 et λ_2 et les vecteurs propres v_1 et v_2 : $ \lambda_2 = \dots $ $ v_2 = \dots $
8) Soit $AX = B$ l'écriture matricielle de système (S_1)	$ \begin{cases} 5x + 3y - 7z = 5 \\ -2x + 4y - 8z = 7 \\ 4x - 1y + 6z = 6 \end{cases} $
- Calculer $ A $ = $ N(x) $ = - Déduire la solution de (S_1) :	N(y) = $ N(z) $ =

FSJES - Casablanca	a A-U: 2017 -2018	
Filière : Sciences É	Economiques et Gestion <u>Semestre</u> : 2 <u>Ensemble</u> :	
Elément de Module	e : Algèbre Professeur : Ouaïl OUCHETTO	
Nom:	Prénom :	
CNE:		
Écrire juste les répo	onses dans les champs réservés à cet effet.	
1) Soient $u = (3, -9)$	9,5) et $v = (8,5,-2)$ deux vecteurs de \mathbb{R}^3 . Calculer le Cosinus de l'angle	entre u et v:
	$Cos(u, v) = \dots$	
2) Soient $A = \begin{pmatrix} 6\\1\\-8\\4 \end{pmatrix}$	et $B = (7 \ 6 \ -3 \ 9)$, calculer les produits :	
	$-5B*A= \dots \qquad 5A*B= \dots$	
	$z \in \mathbb{R}^3 / 2x - 9z^2 = 0$ une partie de \mathbb{R}^3 . Donner deux vecteurs qui montre pace vectoriel de \mathbb{R}^3 .	
	<i>u</i> = <i>v</i> =	
4) Donner le noyau	de l'application $p(x, y, z) = (x + 6y, 3x + 18y, 6z)$	
5) Pour quelle valeur (3, β , -7) et $u_3 = 0$	r de β le système $\{u_1,u_2,u_3\}$ n'est pas générateur de \mathbb{R}^3 , avec $u_1=(4,$ $(1,4,-2)$ $\beta=$	
6) Écrire le vecteur a	avec $v = (-6, 6,5)$ dans la base $B = \{u_1, u_2, u_3\}$ avec $u_1 = (6, 3,1), u_2$	= (9, 5, -2)
et $u_3 = (1, 4, -6)$.		
	$v = \dots u_1 + \dots u_2$	
	w) est liée avec $u = (0, -2, 3)$, $v = (1, 0, -5)$ et $w = (6, -2, -27)$. Donr existe entre ces vecteurs.	ner la relation
	ce P(λ) son polynôme caractéristique avec P(λ) = λ^3 + -7 λ^2 +4 λ +6. The enfonction de la matrice A et la matrice unitaire I :	
	$A^{-1} =$	
9) Soit $AX = B$ l'écri	riture matricielle du système (S_1) $\begin{cases} 3x + 8y - 5z = -1 \\ -2x + 4y - 3z = 4 \\ 5x + 2y + 5z = -2 \end{cases}$	
- Calculer <i>A</i> =	$ N(x) = \dots N(y) = \dots N(z) = \dots$	
- Déduire la solution	$1 ext{ de } (S_1):$	

FSJES - Casablanca A-U: 2016 -2017 / Rattrapage
1ère Session
Filière: Sciences Économiques et Gestion Semestre: 2 Ensemble:
Elément de Module : Algèbre Professeur : Ouaïl OUCHETTO
Nom: Prénom :
CNE:
Écrire juste les réponses dans les champs réservés à cet effet
1) p est une application de \mathbb{R}^3 dans \mathbb{R}^3 avec $p(x,y,z) = (5x - 2y + 7z, x + 5y - 2z, 3x - 3z)$. Calcule
$p(-2,3,-5) = \dots p(4,-3,2) = \dots$
2) p est une application de \mathbb{R}^3 dans \mathbb{R}^3 avec $p(x,y,z)=(3x-3y+2z,6x-6y+4z,9x-9y+6z)$. Donner le noyau de p :
3) Pour quelle valeur de β le système $\{u_1, u_2, u_3\}$ est lié avec $u_1=(1,-6,4)$, $u_2=(2,\beta,8)$ et $u_3=(3,4,2)$ dans \mathbb{R}^3 .
$\beta = \dots$
4) Soit $p(x,y) = (8x + \alpha y, 4x - 6y)$ est une application. Déterminer l'ensemble des valeurs de α pour que le rang de p soit égal à 1.
lpha =
5) Soit $A = \begin{pmatrix} -5 & 0 & 2 \\ 0 & 8 & 0 \\ 6 & 0 & 3 \end{pmatrix}$ une matrice. Calculer:
- Le polynôme caractéristique : $P(\lambda) = \dots$
- Les valeurs propres : $\lambda_1 = \dots \qquad \lambda_2 = \dots \qquad \lambda_3 = \dots \qquad \lambda_3 = \dots$
- Les vecteurs propres associés :
v_1 = v_2 = v_3 =
6) On considère la base $\{u_1, u_2, u_3\}$ avec $u_1 = (2, 2, 7), u_2 = (-2, 5, 4)$ et $u_3 = (0, 3, 8)$.
- Soit $A = \begin{pmatrix} 2 & -2 & 0 \\ 2 & 5 & 3 \\ 7 & 4 & 8 \end{pmatrix}$. Calculer $A^{-1} = \dots$
- Calculer les composantes de $u=(7, 6, 4)$ dans la base $\{u_1, u_2, u_3\}$. $u=\dots u_1+\dots u_2+\dots u_3$
7) Soit $AX = B$ l'écriture matricielle du système (S_2) $\begin{cases} -2x + 3y + 5z = 5 \\ 6x - 1y + 4z = -2 \\ 4x + 2y - 8z = 3 \end{cases}$
- Calculer $ A = \dots N(x) = \dots N(y) = \dots N(z) = \dots N(z) = \dots$
- Déduire la solution de (S_2) :

FSJES - Casablanca		A-U: 2016 -2017			
1ère Session					
Filière : Sciences Éc	conomiques et Gestio	on <u>Semestre</u> : 2	Ensemble:		
Elément de Module	: Algèbre	Professeur : Ouaïl	OUCHETTO		
Nom:		Prénom:			
CNE:	N° Exam	nen:	N° Position		
Écrire juste les répo	nses dans les champ	ps réservés à cet e	ffet		
1) Soient $A = \begin{pmatrix} 4\\3\\-6\\5 \end{pmatrix}$					
	3 <i>B</i> * <i>A</i> =		-7A*B=		•••••
2) $C = \{(x, y, z) \in \mathbb{R}^3\}$ et v dans C mais $u + v$	n'est pas dans C.	-	-		deux vecteurs <i>u</i>
	<i>u</i> =	v=			
3) Soit p est une appl	ication de \mathbb{R}^3 dans \mathbb{R}	\mathbb{R}^2 avec $p(x,y,z)$:	= (2x - 3y +	2z, 4x - 6y + 4	z).
Donner le noyau de p):				
4) Pour quelle valeur (3, β , 7) et $u_3 = (2, 3)$		u_2 , u_3 } n'est pas	générateur de	\mathbb{R}^3 , avec $u_1 = 0$	$(5, -7, 3), u_2 =$
	β =				
5) Soit $p(x, y) = (8x)$ le rang de p soit égal				emble des valeur	s de α pour que
6) Soit <i>A</i> une matricon Donner l'inverse <i>A</i> -1				² +4λ+5.	
	A ⁻¹ =				
7) On considère le sy	stème $\begin{cases} 1x + 2y - \\ -3x + y + 5 \\ 5x + 1y + \end{cases}$	6z = 6 $6z = -2.$ Son 6 $9z = 1$	écriture matric	ielle est $AX = B$:	
- Calculer	$A^{-1} = .$				
- Donner l'ense	emble de solutions : .			• • • • • • • • • • • • • • • • • • • •	
8) Soit $AX = B$ l'écri	ture matricielle du sy	$\text{ystème } (S_2) \begin{cases} -1x - 3x - 4x + 4x + 4x \end{cases}$	4y + 6z = 5 $1y + 2z = 2$ $3y - 9z = 1$	•	
- Calculer <i>A</i> =	N(x) =	N(y)	=	$ N(z) = \dots$	
- Déduire la solution	de (S ₂):				

FSJES - Casablanca / A-U: 2014 -2015 / Rattrapage: Juillet 2015		
<u>Filière</u> : Sciences Économiques et Gestion <u>Semestre</u> : 2 <u>Ensemble</u> :		
Elément de Module : Algèbre Professeur : Ouaïl OUCHETTO		
Nom: Prénom :		
CNE:		
Écrire juste les réponses dans les champs réservés à cet effet.		
(5 2) (1 1)		
1) Soient $A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Calculer $(A - B)^2 = \dots$		
2) Calculer l'inverse $A = \begin{pmatrix} -5 & 1 \\ 4 & 2 \end{pmatrix}$ de $B = \begin{pmatrix} 3 & 1 & -6 \\ -3 & 2 & 7 \\ 5 & -2 & 6 \end{pmatrix}$.		
A^{-1} =		
3) p_1 et p_2 deux applications de \mathbb{R}^2 dans \mathbb{R}^2 avec $p_1(x,y)=(6x-3y,x-y,2x-3y)$. Calculer p_1op_2 et p_2op_1 : $p_1op_2(x,y)=\dots p_2op_1(x,y)=\dots$	+ 2y) et p ₂ (x, y)	
4) Donner le système générateur de $G = \{(x, y, z) \in \mathbb{R}^3 / 8y - 3z = 0 \}$		
5) Donner le noyau de l'application $p(x, y, z) = (x + 2y - 3z, 2x + 4y -$	6z, x + 3y - 7z	z)
6) Soit $p(x,y) = (9x + \alpha y, 4x - 5y)$ est une application. Déterminer l'ense le rang de p soit égal à 2.	emble des valeurs	s de α pour que
7) La famille (u, v, w) est liée avec $u = (0, -2, 3), v = (1, 0, -5)$ et $w =$ de dépendance qui existe entre ces vecteurs.	(5, -2, -22). Do	onner la relation
8) Soit $AX = B$ l'écriture matricielle du système (S_2) $\begin{cases} -2x + 5y + 1z = 2 \\ 7x - 1y + 2z = -2 \\ 5x - 2y + 1z = 1 \end{cases}$		
- Calculer $ A = N(x) = N(y) = $	$ IV(Z) =\dots$	•••••
- Déduire la solution de (S) :		

FSJES - Casablanca / A-U: 2014 -2015 / Examen Juin 2015
<u>Filière</u> : Sciences Économiques et Gestion <u>Semestre</u> : 2 <u>Ensemble</u> :
Elément de Module : Algèbre Professeur : Ouaïl OUCHETTO
Nom:
CNE:
Écrire les réponses dans les champs réservés à cet effet.
20110 tos reponses duns les champs reserves à cer erren
1) Calculer le produit des matrices suivantes $A = \begin{pmatrix} 2 & 6 \\ 4 & 2 \\ 1 & -6 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 5 & 2 \\ 4 & 3 & 6 \end{pmatrix}$:
A*B=
2) p est une application de \mathbb{R}^3 dans \mathbb{R}^3 avec $p(x,y,z) = (2x - 3y + z, x + 5y - 2z, x - 6z)$. Calculer: $p(-2,-1,2) = \dots = p(3,4,-1) = \dots = p(3,4,-1)$
3) Soit A = $\begin{pmatrix} 6 & 3 & 0 & 6 \\ 5 & -2 & 2 & 4 \\ 3 & 5 & 0 & -3 \\ 1 & 0 & 0 & 2 \end{pmatrix}$. Calculer $ A = \dots$ 4) Donner le système générateur de $G = \{(x, y, z) \in \mathbb{R}^3 / 5x + 6y - 2z = 0\}$
5) p est une application de \mathbb{R}^3 dans \mathbb{R}^3 avec $p(x,y,z)=(2x-3y+z,4x-6y+2z,7x-2z)$. Donner le noyau de p :
6) Pour quelle valeur de β le rang du système des vecteurs $u_1=(1,-7)$, $u_2=(3/4,\ \beta)$ égal 1. $\beta=\dots$
7) Soit $B = \begin{pmatrix} 4 & 2 & -6 \\ -3 & 1 & 5 \\ 5 & 1 & 7 \end{pmatrix}$. Calculer $B^{-1} = \dots$ Déduire l'ensemble de solutions du système (S_1) $\begin{cases} 4x + 2y - 6z = 5 \\ -3x + y + 5z = -2 \\ 5x + 1y + 7z = 1 \end{cases}$
Déduire l'ensemble de solutions du système (S_1) $\begin{cases} -3x + y + 5z = -2 \\ 5x + 1y + 7z = 1 \end{cases}$
8) Soit $AX = B$ l'écriture matricielle du système (S_2) $\begin{cases} -1x + 4y + 8z = 5\\ 3x - 1y + 2z = 2\\ 4x + 3y - 1z = 1 \end{cases}$
- Calculer $ A = \dots N(x) = \dots N(y) = \dots N(z) = \dots N(z) = \dots$
- Déduire la solution de (S_2) :