Cours d'algèbre (S2) LSEG

Séances du 23 Mars 2020 Ensembles : 9 et 10

Pr. Mounir Boumhamdi

UNIERSITÉ HASSAN II DE CASABLANCA Faculté des sciences juridiques, économiques et sociales

Matrice de transvection

Définition 1.8

On appelle matrice de transvection toute matrice de la forme :

$$T_{ij}(\lambda) = I_n + E_{ij},$$

avec $1 \le i \ne j \le n$ et $\lambda \in \mathbb{K}$

Une matrice de transvection $T_{ij}(\lambda)$ est donc une matrice triangulaire dont tous les termes diagonaux valent 1 et de termes hors de la diagonale tous nuls sauf celui d'indice (i,j) (i.e. en ligne i et colonne j) qui vaut λ .

Matrice de transvection

Définition 1.8

On appelle matrice de transvection toute matrice de la forme :

$$T_{ij}(\lambda) = I_n + E_{ij},$$

avec $1 \le i \ne j \le n$ et $\lambda \in \mathbb{K}$

Une matrice de transvection $T_{ij}(\lambda)$ est donc une matrice triangulaire dont tous les termes diagonaux valent 1 et de termes hors de la diagonale tous nuls sauf celui d'indice (i,j) (i.e. en ligne i et colonne j) qui vaut λ .

Matrice de dilatation

Définition 1.9

On appelle matrice de dilatation toute matrice de la forme :

$$D_i(\lambda) = I_n + (\lambda - 1)E_{ii},$$

avec $1 \leq i \neq j \leq n$ et $\lambda \in \mathbb{K}^*$

Une matrice de dilatation $D_i(\lambda)$ est donc diagonale de termes diagonaux tous égaux à 1 sauf le numéro i qui vaut λ .

Matrice de dilatation

Définition 1.9

On appelle matrice de dilatation toute matrice de la forme :

$$D_i(\lambda) = I_n + (\lambda - 1)E_{ii},$$

avec $1 \leq i \neq j \leq n$ et $\lambda \in \mathbb{K}^*$

Une matrice de dilatation $D_i(\lambda)$ est donc diagonale de termes diagonaux tous égaux à 1 sauf le numéro i qui vaut λ .

- la multiplication à gauche par une matrice de dilatation $D_i(\lambda)$ a pour effet de multiplier la ligne i par λ ,
- la multiplication à droite par une matrice de dilatation $D_j(\lambda)$ a pour effet de multiplier la colonne j par λ ,
- la multiplication à gauche par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la ligne L_i par $L_i + \lambda L_i$,
- la multiplication à droite par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la colonne C_i par $C_i + \lambda C_i$.

- la multiplication à gauche par une matrice de dilatation $D_i(\lambda)$ a pour effet de multiplier la ligne i par λ ,
- la multiplication à droite par une matrice de dilatation $D_j(\lambda)$ a pour effet de multiplier la colonne j par λ ,
- la multiplication à gauche par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la ligne L_i par $L_i + \lambda L_i$,
- la multiplication à droite par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la colonne C_i par $C_i + \lambda C_i$.

- la multiplication à gauche par une matrice de dilatation $D_i(\lambda)$ a pour effet de multiplier la ligne i par λ ,
- la multiplication à droite par une matrice de dilatation $D_j(\lambda)$ a pour effet de multiplier la colonne j par λ ,
- la multiplication à gauche par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la ligne L_i par $L_i + \lambda L_i$,
- la multiplication à droite par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la colonne C_i par $C_i + \lambda C_i$.

- la multiplication à gauche par une matrice de dilatation $D_i(\lambda)$ a pour effet de multiplier la ligne i par λ ,
- la multiplication à droite par une matrice de dilatation $D_j(\lambda)$ a pour effet de multiplier la colonne j par λ ,
- la multiplication à gauche par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la ligne L_i par $L_i + \lambda L_i$.
- la multiplication à droite par une matrice de transvection $T_{ij}(\lambda)$ a pour effet de remplacer la colonne C_j par $C_j + \lambda C_i$.

- Matrice transposée

Si $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ est une matrice de format $m \times n$, on définit la matrice transposée de A notée A^T par $(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$

C'est donc une matrice $n \times m$ obtenue en échangeant lignes et colonnes de la matrice initiale.

- Matrice transposée

Si $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$ est une matrice de format $m\times n$, on définit la matrice transposée de A, notée A^T , par $(a_{ij})_{\substack{1\leq i\leq m\\1\leq i\leq n}}$.

C'est donc une matrice $n \times m$ obtenue en échangeant lignes et colonnes de la matrice initiale.

- Matrice transposée

Si $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ est une matrice de format $m \times n$, on définit la

matrice transposée de A, notée A^T , par $(a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$

C'est donc une matrice $n \times m$ obtenue en échangeant lignes et colonnes de la matrice initiale.

Exemple 1.6

Soit la matrice
$$A$$
 d'ordre 3×2 suivante $A = \begin{pmatrix} 1 & 2 \\ 5 & -3 \\ 2 & -2 \end{pmatrix}$.

Sa transposée est la matrice A^T d'ordre 2 imes 3 suivante ig(1-5-2ig)

Exemple 1.6

Soit la matrice
$$A$$
 d'ordre 3×2 suivante $A = \begin{pmatrix} 1 & 2 \\ 5 & -3 \\ 2 & -2 \end{pmatrix}$.

Sa transposée est la matrice A^T d'ordre 2×3 suivante $\begin{pmatrix} 1 & 5 & 2 \\ 2 & -3 & -2 \end{pmatrix}$.

- $(A^T)^T = A \text{ si } A \in \mathcal{M}_{n,p}(\mathbb{K}),$
- $(\alpha A)^T = \alpha(A)^T$ si $\alpha \in \mathbb{K}$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A+B)^T = A^T + B^T$ si A et $B \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A \times B)^T = A^T \times B^T$ si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,m}(\mathbb{K})$.

- $(A^T)^T = A \text{ si } A \in \mathcal{M}_{n,p}(\mathbb{K}),$
- $(\alpha A)^T = \alpha (A)^T$ si $\alpha \in \mathbb{K}$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A+B)^T = A^T + B^T$ si A et $B \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A \times B)^T = A^T \times B^T$ si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{n,m}(\mathbb{K})$.

- $(A^T)^T = A \text{ si } A \in \mathcal{M}_{n,p}(\mathbb{K}),$
- $(\alpha A)^T = \alpha(A)^T$ si $\alpha \in \mathbb{K}$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A+B)^T = A^T + B^T$ si A et $B \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A \times B)^T = A^T \times B^T$ si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,m}(\mathbb{K})$.

- $(A^T)^T = A \text{ si } A \in \mathcal{M}_{n,p}(\mathbb{K}),$
- $(\alpha A)^T = \alpha (A)^T$ si $\alpha \in \mathbb{K}$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A+B)^T = A^T + B^T$ si A et $B \in \mathcal{M}_{n,p}(\mathbb{K})$,
- $(A \times B)^T = A^T \times B^T$ si $A \in \mathcal{M}_{p,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,m}(\mathbb{K})$.

Matrice symétrique, matrice antisymétrique

- Une matrice A est dite symétrique si $A^T = A$
- Une matrice A est dite antisymétrique si $A^T=-A$.

Matrice symétrique, matrice antisymétrique

- Une matrice A est dite symétrique si $A^T = A$.
- Une matrice A est dite antisymétrique si $A^{\mathcal{T}}=-A$

Matrice symétrique, matrice antisymétrique

- Une matrice A est dite symétrique si $A^T = A$.
- Une matrice A est dite antisymétrique si $A^T = -A$.

Exemple 1.7

•
$$A=\begin{pmatrix} 1 & 5 & -9 \\ 5 & 4 & 0 \\ -9 & 0 & 7 \end{pmatrix}$$
 est une matrice symétrique.

•
$$B = \begin{pmatrix} 0 & 5 & -9 \\ -5 & 0 & 7 \\ 9 & -7 & 0 \end{pmatrix}$$
 est une matrice antisymétrique.

Exemple 1.7

•
$$A = \begin{pmatrix} 1 & 5 & -9 \\ 5 & 4 & 0 \\ -9 & 0 & 7 \end{pmatrix}$$
 est une matrice symétrique.

•
$$B = \begin{pmatrix} 0 & 5 & -9 \\ -5 & 0 & 7 \\ 9 & -7 & 0 \end{pmatrix}$$
 est une matrice antisymétrique.

Matrice inversible, matrice singulière

Définition 1.12

• Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **inversible** ou **régulière** si elle est symétrisable pour le produit matriciel, autrement dit s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$A \times B = B \times A = I_n$$
.

- L'inverse, s'il existe, d'une matrice A est noté A^{-1} .
- Une matrice non régulière est dite singulière.

Matrice inversible, matrice singulière

Définition 1.12

• Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **inversible** ou **régulière** si elle est symétrisable pour le produit matriciel, autrement dit s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$A \times B = B \times A = I_n$$
.

- L'inverse, s'il existe, d'une matrice A est noté A^{-1} .
- Une matrice non régulière est dite singulière.

Matrice inversible, matrice singulière

Définition 1.12

• Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite inversible ou régulière si elle est symétrisable pour le produit matriciel, autrement dit s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$A \times B = B \times A = I_n$$
.

- L'inverse, s'il existe, d'une matrice A est noté A^{-1} .
- Une matrice non régulière est dite singulière.

Soit A est une matrice carrée d'ordre n, on définit la trace de A comme la somme des éléments de la diagonale principale :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Exemple 1.8

La trace de la matrice
$$B = \begin{pmatrix} 5 & 3 & -9 \\ 0 & 2 & 7 \\ 0 & 2 & -3 \end{pmatrix}$$
 est $tr(A) = a_{11} + a_{22} + a_{33} = 5 + 2 + (-3) = 4$.

Soit A est une matrice carrée d'ordre n, on définit la trace de A comme la somme des éléments de la diagonale principale :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Exemple 1.8

La trace de la matrice
$$B = \begin{pmatrix} 5 & 3 & -9 \\ 0 & 2 & 7 \\ 0 & 2 & -3 \end{pmatrix}$$
 est : $tr(A) = a_{11} + a_{22} + a_{33} = 5 + 2 + (-3) = 4$.

-Si A et B sont deux matrices carrées d'ordre n, alors

•
$$\operatorname{tr}(A^T) = \operatorname{tr}(A)$$
,

•
$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$
,

-Si A est une matrice $m \times n$ et B une matrice $n \times m$, alors $\operatorname{tr}(A \times B) = \operatorname{tr}(A) \times \operatorname{tr}(B)$.

- -Si A et B sont deux matrices carrées d'ordre n, alors
- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$,
- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$,
- -Si A est une matrice $m \times n$ et B une matrice $n \times m$, alors $\operatorname{tr}(A \times B) = \operatorname{tr}(A) \times \operatorname{tr}(B)$.

- -Si A et B sont deux matrices carrées d'ordre n, alors
- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$,
- tr(A + B) = tr(A) + tr(B),
- -Si A est une matrice $m \times n$ et B une matrice $n \times m$, alors $\operatorname{tr}(A \times B) = \operatorname{tr}(A) \times \operatorname{tr}(B)$.

- -Si A et B sont deux matrices carrées d'ordre n, alors
- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$,
- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$,
- -Si A est une matrice $m \times n$ et B une matrice $n \times m$, alors $\operatorname{tr}(A \times B) = \operatorname{tr}(A) \times \operatorname{tr}(B)$.